周一至周日 8:00-22:30(免长途费):
学术咨询:400-888-7910 订阅咨询:400-888-7911
征稿授权 经营授权
当前位置: > 论文资料 > 自然科学 > 医学教育科技论文 > 正文
医学教育科技论文( 共有论文资料 30 篇 )
推荐期刊
热门杂志

医学期刊统计学错误思考

2012-11-12 11:20 来源:医学教育科技论文 有人参与在线咨询

本文作者:张巧莲 郑玉建 单位:新疆医科大学学报编辑部 新疆医科大学公共卫生学院

在医学论文写作中,医学统计学方法应用是必不可少的,正确使用能保证科研工作顺利进行,并使科研成果更具有科学性、代表性和可靠性。反之,如果使用不当或者误用,会直接影响研究结果的质量,反而会使读者产生误解,甚至有时会导致错误的结论。近年来,医学统计学方法在医学科研中的应用越来越受到国内广大医学科研工作者的重视,统计分析结果表达已成为医学论文中一个不可缺少的重要组成部分。医学统计学是评价医学科技论文质量优劣的重要依据,然而从近年发表的论文来看,有不少作者对统计方法的使用还不熟悉,实际应用中统计方法滥用、错用和误用的情况时有发生[1]。据国外20世纪60年代到80年代对不同医学期刊发表论文的调查,有统计学错误的论文比例最高者达66%,最低者也有20%[2-4]。国内有学者对5种中华医学会系列杂志论著中统计学方法的应用状况进行了调查,结果显示,1985年统计错误的论文比例为24%,1995年为36%[5]。这些调查研究均说明统计方法误用的严重性以及正确应用的紧迫性。国外从20世纪70年代起就有针对医学论文的科研设计与统计方法应用情况的调查研究,国内学者也进行了相关研究[6]。这种研究有助于及时了解医学科研论文中统计方法的应用质量,发现存在的问题,提高医学科研工作者应用统计方法的水平。笔者总结了近年来已发表的医学科技论文中常见的统计学问题,希望能引起各位专家学者和临床医生的共识与重视,促进我国医学期刊质量的提高。

1 统计设计存在的常见问题

统计设计是整个研究中最重要的一环,是研究工作应遵循的依据。常见的统计设计问题有:忽视组间均衡性,样本缺乏代表性,样本例数不足,未设置对照组,未随机分组,未提出统计分析方法等。针对以上问题,在科研设计中一定要遵循实验设计的四大原则即“随机、对照、均衡、重复”的原则[6]。

1.1不遵循或不重视随机化原则

随机化是科研设计的重要原则,直接影响研究结果的可信度。随机化既要随机抽样,还要随机分组,并有足够的样本量作前提。然而,在医学论文中许多作者对此不够重视,主要表现在论文中统计处理随机化不突出,随机化缺失情况比较常见,有的论文甚至将随机误解为随意、随便,不采用随机化处理方法,导致结果缺乏可靠性。还有些文章中没有提出“随机”抽样的设计与方法,没有排除标准,给人随意选择病例之感,且病例数少,因此没有代表性,所得出的结论不可靠。部分文章虽然注明了“随机”,但未提及采取什么方法进行随机化研究或两组间的例数相差甚远,不符合随机化的一般规律,没有临床参考价值[7]。

1.2缺少对照研究或对照组设计不合理

正确设立对照是临床或实验研究的一个核心问题,设立对照的意义在于说明临床试验或实验研究中干预措施的效应,减少或防止偏倚和机遇产生的误差对试验结果的影响。目前,国内许多期刊发表的论文对照组设计不合理现象比较普遍,尤其有些作者对某种新药或新技术在临床的应用观察研究中,不设对照组,缺乏对照观察,得出的结论缺乏科学性,令人怀疑。有的文章虽然设立了对照组,但在分析结果时,却没有将试验组与对照组的结果进行比较,而仅将各组间的自身前后进行比较,从而使该研究失去对照意义。对照组选择不当,还表现在两组间重要的临床特征和基线情况相差太大,无可比性,如性别、年龄、病情、经济情况和文化程度等不一致,如有些论文将健康人或志愿者作为对照组,使结果受到非处理因素的影响,产生偏倚或系统误差,使结论不可信[7]。

1.3均衡性原则掌握不够

均衡性原则要求实验中的各组之间除处理因素不同外,其他可控制的非处理因素要尽可能保持一致。特别对疾病预后有重要影响的临床特性一定要在组间分布均衡。各组间越均衡,可比性越强。有些作者在对病例进行分组时,忽视了均衡性原则,两组之间没有可比性,结论自然是错误的。具体表现在:有的文章对治疗组与对照组的相应统一指标没有设在均衡的水平上。对治疗组情况交代的比较详细,而对对照组的年龄、性别、病情等不予交代,或所选对照组的年龄与治疗组不在一个年龄段,影响了作者对指标的观察[7]。

1.4重复的原则掌握不好

所谓重复,一是指重复试验或平行试验,二是指各样本组的例数要有一定的数量,即样本的例数要足够大。虽然随机化是增强非处理因素均衡性的重要方法,但当各组内例数过少时,尽管采用了随机化分组的方法,也难以保证非处理因素的均衡一致。在随机化分组的基础上,只有样本例数足够大,才能使非处理因素均衡一致,同时也才能使抽样误差减小,增强样本对总体的代表性。一般来说,在随机分组的前提下,样本例数越大,各组之间非处理因素的均衡性越好;但当样本量太大时,往往又会给整个实验和质量控制工作带来更多的困难,同时也会造成浪费。为此,在实验设计时,还应保证在实验结果具有一定可靠性的前提下,确定最少的样本例数。一般说来,计数指标每组样本不得少于20~30例,计量指标每组样本不得少于5~10例。在多因素分析时,一般认为样本例数至少为观察指标的5~10倍[8]。

1.5样本的含量

样本的含量的大小直接影响到结论的可靠性。样本量过少,则抽样误差大,结果可靠性差,且经不起重复验证;反之,盲目加大样本量也会造成人、财、物的浪费,同时也造成非抽样误差增大。故应在保证研究结果精确可靠的前提下,确定最小的样本量。如某篇论文报道某药治疗的临床疗效,实际总例数为10例,其中6例有效,于是作者得出有效率为60%。显然,有限的病例数不能充分说明该药是否有效,作者贸然得出结论,容易给他人造成假象甚至误导[9]。

2 统计方法选择与使用不当

在选择统计方法之前,首先应确定研究资料是计数资料还是计量资料。只划分其类别而得到的资料为计数资料,也叫定性资料,如根据治疗结果计算出的治愈率、阴性率、阳性率等。测定某个具体数值而得到的资料为计量资料,如血压值、血细胞计数、血氧分压测定等许多物理诊断和化验检查的结果。目前,医学论文中计数资料最常用的统计方法为χ2检验,计量资料最常用的统计方法为t检验。值得注意的是,各种假设检验方法均有其适用条件,应根据资料特点来选用最适当的方法。均数与标准差分别是描述正态分布资料集中和离散趋势的指标。能否选用“均数±标准差”来描述某一资料的分布特征,关键看该资料是否符合正态分布。当资料不符合正态分布或方差不齐时,应将资料转换使之符合正态分布,方差齐性后再用t检验或方差分析,否则用秩和检验。有些作者在使用t检验时,未考虑到上述适用条件而盲目使用,造成统计学处理不当或统计学计算错误[10]。

在线咨询
推荐期刊阅读全部
.